Module iaf.fit.metrics
Implementation of simple metrics.
Functions
def calc_sse(y: numpy.ndarray, y_hat: numpy.ndarray)-
Calculate the Sum of Squared Errors between prediction
y_hatand datay.Parameters
y:np.ndarray- Array of target values.
y_hat:np.ndarray- Array of predicted values.
Returns
sse:float- Sum of squared errors.
def calc_sse_weighed(y: numpy.ndarray, y_hat: numpy.ndarray, se: numpy.ndarray)-
Calculate the Sum of Squared Errors between prediction
y_hatand datayweighed by the standard error vectorse.Parameters
y:np.ndarray- Array of target values.
y_hat:np.ndarray- Array of predicted values.
se:np.ndarray- Array of standard error values.
Returns
sse:float- Weighted sum of squared errors.
def r_squared(y: numpy.ndarray, y_hat: numpy.ndarray)-
Calculate the coefficient of determination
R^2for vectorsy_hatandy.Parameters
y:np.ndarray- Array of target values.
y_hat:np.ndarray- Array of predicted values.
Returns
r_squared:float- Coefficient of determination
R^2
def r_squared_adj(y: numpy.ndarray, y_hat: numpy.ndarray, p: int)-
Calculate the adjusted coefficient of determination
R^2for vectorsy_hatandyand number of parametersp.Parameters
y:np.ndarray- Array of target values.
y_hat:np.ndarray- Array of predicted values.
p:int- Number of parameters.
Returns
r_squared:float- Adjusted coefficient of determination
R^2